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SEARCH FOR THE B, MESON AT CDF
Prem P Singh, PhD
University of Pittsburgh, 1997

The bottom-charm meson B, is predicted by the Standard Model with an
expected mass in the range of 6.2 to 6.3 GeV/c?. We report on the search for
the B. meson in the inclusive decay channel J/¢ + p + X in pp collisions at
Vs = 1.8 TeV for an integrated luminosity of 110 pb~'. An upper limit on the
cross-section times branching ratio of B, — J/¢+ u+ X relative to B, — J/Y K

as a function of assumed B, lifetime is presented.
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CHAPTER 1.
The B, Meson

A. Introduction

The B, meson is the bound state of a b and a ¢ quark and is the last of the
family of the B mesons yet to be discovered. It is expected to be produced in
pp collisions. The Tevatron at Fermilab is the highest energy pp collider in the
world, and presents an energy regime which makes it a natural place to look
for the B, meson. The B, meson is made up of a heavy quark and an anti
quark of differing flavors. This results in specific production mechanisms and
spectroscopy, which allow one to sharpen the quantitative understanding of the

QCD dynamics and the study of the parameters of the electroweak theory.

The B, spectrum can be calculated using non-relativistic potential models
(Ref. [1] to [5]), or the QCD sum rules (Ref. [6] to [14]). Studies of the B,
meson can be used to test the self-consistency of the potential models and the
QCD sum rules. Its study will also help improve the quantitative understanding

of the quark model and the QCD sum rules.

The B, meson lies between the charmonium and the bottomonium systems
both in terms of its mass and the typical separation distance between the two
heavy quarks. In the region of the average distances in the ¢ and the bb
systems the quark potential model has simple scaling properties [4, 15, 16],
which states that the kinetic energy of the heavy quarks is almost a constant
value and is independent of the quark flavors and the excitation levels in the
heavy quarkonium system. This has been studied extensively for the cc and the

bb systems and can be used to study the B, system.



B. Mass of the B,

1. The B, mass from the Potential Model

The B, mass can be calculated using the framework of the phenomenological
potential models for non-relativistic heavy quarks. The masses of the charmo-
nium and the bottomonium systems have been studied experimentally in detail
and are described quite accurately in the framework of the potential models. To
describe the B, system, it would be advantageous to use the potentials whose
parameters do not depend on the flavor of the constituent quarks of the system.
This could be done by using a model which describes both the charmonium and
the bottomonium systems accurately. This will not require the interpolation
of the parameters of the model, which are obtained experimentally from the
charmonium and the bottomonium systems to an intermediate region of the
B, system. Eichten, et al., in Ref. [17], consider four functional forms of the
potentials that give reasonable accounts of the c¢ and the bb spectra. These
are (1) a QCD motivated potential [18] given by Buchmiiller and Tye [6], (2) a
power law potential [4], (3) a logarithmic potential [5] and (4) a Coulomb plus
linear potential [19].

The Schrodinger equation for each of the potentials is solved to determine
the position of the 1S center of gravity for the cé, cb and the bb bound states.
The S, —' S, splitting of the ground state is given by Equation 1-1 [15]:

32ma, U (0)?

M(asl) - M(ISU) = (1-1)

The strong coupling constant for each potential is fixed by the hyperfine splitting

observed in the charmonium family [20],
M(J/Y) — M(n,) = 117 MeV /c? (1-2)

The variation of o, with momentum is neglected and the splitting of the ¢b and
bb is scaled from the charmonium value (Equation 1-2). Table 1-1 (taken from
Ref. [17]) lists the resulting vector and pseudo-scalar masses as predicted by

the various potentials. Kwong and Rosner [19] have surveyed the techniques for



3

estimating the masses of the cb ground state; their results are listed as follows:
6.194 GeV/c® < Mass(B,) < 6.292 GeV /c? (1-3)
and
6.284 GeV/c* < Mass(B}) < 6.357 GeV/c (1-4)
Eichten and Quigg in Ref. [17] take
Mass(B,) = 6.258 & 0.020 GeV /c” (1-5)

as the best estimate for the interval in which the B, meson will be found.

The mass spectrum of the cb system with the various splittings is shown
in Fig. 1-1. This spectrum was calculated by Eichten and Quigg [17] in the
Buchmiiller-Tye potential [6]. The spectrum is similar to those calculated by
Eichten and Feinberg [21] in the Cornell potential, by Gershtein. et al. [22] in
the Martin potential and by Chen and Kuang [23] in a QCD inspired potential
developed by them.

2. The B, mass from the QCD Sum Rules

The mass calculations for the vector and the pseudo-scalar ¢b in the frame-
work of the QCD sum rules agrees with the calculations made from the potential
models. The errors of the mass estimates from the QCD sum rules are larger
than that from the potential model. This is so because the results obtained
from the QCD sum rules depend on the choice of the values of the hadronic

continuum threshold energy and the current masses of the constituent quarks.

C. Decays of the B,

1. Lifetime of the B. meson

The B, decay can take place in three ways; (1) the b-quark decay with the
spectator c-quark, (2) the c-quark decay with the spectator b-quark and (3) the

annihilation channel. The diagrams for the three modes of the decay are shown



Table 1-1. Quarkonium ground-state masses (in GeV/c?) in the

Buchmiiller-Tye, power law, logarithmic and coulomb plus linear potentials.

Observable QCD, Power Law | Logarithmic, | Cornell
Ref. [6, 18] | Ref. [4] Ref. [5] Ref. [19]
(ct) 1S 3.067 3.067 3.067 3.067
) 3.097 3.097 3.097 3.097
N, 2.980 2.980 2.980 2.980
v —n, 0.117% 0.117° 0.117¢ 0.117¢
(ch)1S 6.137 6.301 6.317 6.321
B! 6.337 6.319 6.334 6.343
B. 6.264 6.248 6.266 6.254
B — B, 0.073 0.071 0.068 0.089
(bb)1S 9.440 9.446 9.444 9.441
T 9.464 9.462 9.460 9.476
M 9.377 9.398 9.395 9.335
T 0.087 0.064 0.065 0.141

“Input value; determines o, = 0.36. * Input value; determines a, = 0.43

“Input value; determines o, = 0.37. ¢ Input value; determines o, = 0.31
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in Fig. 1-2. The total width of the decay [24] is summed from the three partial
widths,

,(Be—=X)=,(b—X)+, (¢c— X)+, (ann) (1-6)

If we ignore the quark binding energy inside the B, then we can arrive at a
simplistic estimate of the width. The width due to the b-spectator and the

c-spectator can be written as

G| Vie'my

G| Vie[*my
X) = b—— 1-
) (C - ) 5 ]_927T3 ( 8)
respectively. The width of the annihilation channel can be expressed as :
Gh m? \*
) (ann) = ; §|%c|2Mbcm? (1 - szc> f;ocia (1'9)

where C; = 1 for the 7v, channel, C; = 3|V,,|? for the ¢s channel and m; is the

mass of the heaviest fermion.

The three widths can be calculated from the known parameters in Equa-
tions 1-7, 1-8 and 1-9. From these calculations one can get a rough estimate
on the lifetime, which should be of the order of 75, ~ (2 —5) x 10~ *s. In this
estimate, the fractions of the b-quark decay , c-quark decay and the annihilation
decay are 45%, 50%, and 5%, respectively [24]. However, these estimates do not
take into consideration the strong binding of the quarks in the B, meson. After
incorporating the corrections due to the strong binding of the quarks in the B,,
the three processes for the B, meson decay result in an approximate estimate
for the B, life time [24], which is quoted as

Tp, &5 x 107" (1-10)

With this correction, the fractions of the b-quark decay, c-quark decay and the
annihilation decay channels are 45%, 37% and 18% respectively. Most of the
uncertainty in the B, life time comes from the choice of the quark masses. The

probabilities of the various decays are shown in Table 1-2 (from Ref. [25]).
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Table 1-2. The width (in eV) of the inclusive decays of the b and the ¢ quarks
in free and bound (B,) states and the branching ratios (BR in %) of the inclusive

B, decays.

Decay Mode Free | B | B.R. || Decay Mode Free | B[ | B.R.

quarks in % quarks in %
b—c+et +u, 62| 62| 4.7 | c—s+et +u, 124 74| 5.6
b—e+put+u, 62| 62| 47| c—s+ut+uy, 124 | 74| 5.6
b—sc+1t+u, 14| 14| 10| c—s+u+d 675 | 405 | 30.5
b—c+d+u 248 | 248 | 18.7 | c— s+ u+3 330 20| 1.5
b—c+s5+c 13 13| 1.0||lc—=d+et +u, 7 41 0.3
b—c+5+c 87| 87| 65| c—d+put+uy, 7 41 0.3
b—c+d+c 50 5| 04|lc—adutd 39| 23] 1.7
B st 4y, | 63| 46 || Bf =sc+s S| o162 12.2
Bf —wc+d -1 8| 06| Bf —all - [ 1328 | 100

2. Experimental Signatures

The branching ratio of the B, — J/i¢ + X is about 17 %. Hence it is

a desirable decay channel for the experimental search for the B,. It can be

searched in the exclusive mode B, — J/v + m or the inclusive channel B, —

J/1p + ¢+ X. These two channels have a clean experimental signature. In the

exclusive case, one searches for two muons from the .J/¢ and a pion track from a

displaced vertex. For the inclusive channel, one searches for the two muons from

the J/1 and a lepton (muon or electron) from a displaced vertex. Although the

exclusive channel is required to reconstruct the B, mass, the branching ratio for
B, — J/v + 7 is about 0.24% [25] which makes it more difficult to find. The
inclusive channel is most probably the discovery channel. The branching ratio
for the B, — J/1 + ¢+ X decay channel is about 4.7% [25]. The search for the
B, meson in the B, — J/¢+m channel has been done at CDF and the 95% C.L.
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upper limit on the relative production of the B, — J/¢ + « to B, — J/¢YK is
reported in Ref. [26].

This thesis describes the search for the B, meson in the inclusive channel
B, = J/Y+u+X.

D. Production of the B, at the Tevatron

1. Production Cross Section
The calculation of the B, production in e”e™ collisions shows that
0(Z° - BEX) ~ 0(Z° = bbX) x 107 (1-11)

This estimate agrees with the Monte Carlo events from HERWIG [27] in which
7° decays into BF. Using HERWIG, Lusignoli, et al., in Ref. [28] show that at
the Tevatron the BF production would be about 10~2 times the bb production

cross section.

Masetti, et al. in Ref. [29] showed that the hadronic production of the
B, at high energies is dominated by the subprocesses gg — B.b¢. The hadron
production cross section can be calculated fully to order o in the framework
of perturbative QCD (PQCD). This calculation has been performed by several
authors [30, 31, 32, 33]. In this estimate the gluon-gluon scattering at lowest
order involves 36 diagrams. The 36 diagrams can be obtained from Fig. 1-3 by
taking all the combinations of the initial gluon momenta and the final quark fla-
vors. The process q¢ — B bc is expected to give a negligible contribution to the
hadronic production cross section. The production cross section is estimated for
different gluon distribution functions and evolution scale Q*. Figure 1-4 (from
Ref. [29]) shows the differential cross section do/dpr for direct B, production.
It is calculated for both the Tevatron and the LHC energies using the MRS(A)
gluon distribution for two different evolution scales (Q* = 4Mp3 and Q* = 3).
Masetti, et al. in Ref. [29] give an estimate for the B, production cross section

in hadronic collisions, including the contribution due to the production of the
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excited B. state which finally decays into the pseudo-scalar B,. The total cross

section will be,

Ororal (PP — B X) ~ 20 — 50nb (At the Tevatron energy of 1.8 TeV) (1-12)

Ororal (PP — B X) ~ 0.3 — 0.8 ub (At the LHC energy of 14 TeV)  (1-13)

2. Prospects of Finding the B, at CDF
The number of B, — J/1 + p+ X events expected to be observed at CDF

can be determined using the estimate

70(5(0255) ~ 107 (1-14)

We can write the following equation:

(B. = J/YpX) _ o(BB;) BR(B.—J/ypX) _
(B—J/vX) o (bb) x BR(B — J/¢X) ~ 5 x 107" (1-15)

We observe about 40,000 .J/«’s in the CDF data that come from a B decay; of
these, 200 .J/1’s would come from B, — J/¢¥uX. From Monte Carlo we get the

following formula:

Number of B, events picked by analysis code

= .02 1-16
Number of B, passing the J /v trigger 026 (1-16)

Using this number, we would expect to observe about 5 B, — J/¢uX events in
the CDF data. However, this number will have an error in excess of 70% due

to the uncertainties in Eq. 1-14 and the branching ratio of B. — J/¢ + pu+ X.
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Figure 1-2. The diagrams of the B, decays; (a) the c-spectator decays; (b) the

b-spectator decays; (c) the annihilation decays.
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Figure 1-3. Feynman diagrams for gg — B bc. There are 13 diagrams shown
in this figure, the complete set of 36 diagrams can be obtained from the 13 dia-
grams by performing all the possible combinations of the initial gluon momenta

and the final quark flavors.
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Figure 1-4. Differential cross section do/dpy (in nb GeV™') for di-
rect B, production calculated with MRS(A) gluon distribution for Tevatron
(v/s = 1.8TeV). The upper dotted line shows the distribution with the evolu-
tion scale Q% = 4M,23€ and the lower dotted line shows the distribution with the

evolution scale ) = 5. The two solid lines show similar distributions for the
LHC (/s = 14TeV).
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CHAPTER 2.
The Tevatron and the CDF Detector

The experiment described in this thesis was performed using the CDF de-
tector at the Fermilab Tevatron. The Tevatron is a pp accelerator and a storage
ring facility. The CDF detector is used to study pp collisions at the Tevatron.
A brief description of the Tevatron and the CDF detector is presented in this
chapter. A more thorough description of the detector is given in [36, 37, 38, 39].

A. Tevatron

The Tevatron is currently the highest energy particle accelerator in the
world. It can be operated in both “fixed target” and “collider” modes. When
operated in the collider mode, the center of mass energy of the the colliding
beam is 1.8 TeV. Figure 2-1 shows a schematic diagram of the Tevatron along

with the linac, booster, main ring and the anti-proton storage ring.

1. Introduction

Physics processes like high Q* QCD scattering, b quark production, top
quark production, W production and SUSY production depend critically on
the accelerator energy. To obtain high mass or high %, one needs energetic
initial state partons. Since the parton distribution in the proton is peaked at
small z (= P,

varton] Poroton), @ high flux of energetic partons requires protons

with high energies.

A large number of pp collisions must take place to observe processes with

small production cross sections. Luminosity is a parameter that gives the rate

13
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Figure 2-1. Schematic drawing of the beam-lines at Fermilab. The figure
shows the Linac, Booster, Main Ring, Tevatron and the Anti-proton storage

ring
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of collisions. It is given by
N =o0L, (2-1)

where N is the number of events produced per second for a final state, o is
the production cross section for that state and L is the luminosity. The unit of
luminosity is the inverse of the unit of cross section. For an accelerator like the
Tevatron, which has particles distributed in bunches rather than a continuous

beam , the luminosity is defined as

N,N,Bf,
=St s

where N, and N are the numbers of protons and anti-protons in each bunch.

B is number of the bunches of each type, f; is frequency of revolution (50 kHz

for the Tevatron), and o is the transverse cross-sectional size of the bunches.

The transverse beam size, o, is determined by the magnetic focusing properties

of the accelerator and the characteristics of the beam. It can be expressed as
2

* D + p
S % (%) , (2-3)

where §* depends on the configuration of the accelerator’s quadrupole magnets
and ey is the invariant beam emittance. Beam emittance (e = [ da'dz, where
x' = dx/dz) is the phase space area occupied by the beam; the invariant beam
emittance is given by €5 = ve. In order to maximize the luminosity, 5 and the

beam emittance should be minimized and the beam energy () maximized.

2. Operation of the Tevatron

To get proton beams in the collider, one starts with negatively charged
hydrogen, which is accelerated in a Cockroft-Walton accelerator to 750 keV.
The two electrons are then stripped from the ion and the resulting proton is
transferred to the linac (linear accelerator ) in bunches. In the Linac the proton
bunches are accelerated to 200 MeV. The bunches are then injected into a
Booster Ring, which accelerates them to 8 GeV and injects them into the main
ring. The main ring accelerates them to 150 GeV and puts them in the Tevatron
which accelerates them further to 900 GeV, which is the final energy of the

beam. This process is shown in the flow chart in Fig. 2-2. A total of six proton
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bunches are injected into the Tevatron and collide with six bunches of anti-
proton of the same energy coming from the opposite direction. There are six
interaction regions for the proton anti-proton collisions. The CDF experiment

is located at the interaction region called BO.

The main ring is also used for the production of anti-protons. To produce
anti-protons, protons are accelerated in the main ring to 120 GeV and collide
with a tungsten target. Anti-protons are created in the ensuing collision. The
anti-protons created by the tungsten target are passed through a lithium lens
and into a debuncher ring. This cools the beam stochastically and uses bunch
rotation techniques to reduce the energy spread and the transverse motion of
the anti-protons. The anti-protons are then sent into an accumulator. The
accumulator stores the anti-protons until there are enough of them to start the
colliding beams in the Tevatron. For the Run 1la and the Run 1b of the Tevatron
a stack of about 10'? anti-protons was considered to be sizable enough to have

an effective collider run.

Once the six bunches of the protons are injected into the Tevatron the ac-
cumulator injects six bunches of anti-protons in the main ring. The main ring
accelerates them from 8 GeV to 150 GeV and injects them into the Tevatron,
which further accelerates them to 900 GeV. The accelerator parameters for Run
la and Run 1b are listed in Table 2-1.

Table 2-1. The Tevatron parameters during Run 1la and Run 1b

Energy 900 GeV/c?
Number of Proton Bunches 6

Number of Anti-Proton Bunches | 6

Emittance for Protons = 257 mm-mrad
Emittance for Anti-Protons = 157 mm-mrad
G* =0.5m

Luminosity =10 x 10*! em 257!
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Figure 2-2. Flowchart of the process by which protons are accelerated to 900
GeV/c? at the Fermilab Tevatron.
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B. The CDF Detector

The CDF detector is a multipurpose detector operating at the B0 interaction
region of the Fermilab Tevatron. Figure 2-3 shows a side view cross section of
the CDF detector. The protons travel from the east and the anti-protons travel
from the west. The direction of the proton beam is assumed to be 